CSAW 2023 Final Phase Report

Ilias Fiotakis
Department of
Electrical Engineering
Democritus University
of Thrace
iliasfio@gmail.com

Konstantinos S. Mokos
Department of Informatics
University of Piraeus
Piraeus, Greece
kostasmkuni @ gmail.com

Abstract—This document outlines the response to the chal-
lenges published for the final phase of CSAW 2023 Embedded
Security Challenge. In particular this report consists of a presen-
tation of general conclusions drawn from the analysis of all the
challenge sets, the methodology approach followed by our team
and research performed for each task. The report is structured in
3 main sections, introduction, methodology and finally challenges
where we provide the necessary evidence along with the steps
followed towards the solution for each challenge with a brief
description of them.

Index Terms—Side Channel Attack, Timing Attacks, Reverse
Engineering

I. INTRODUCTION

Following the published instructions, our team utilized
external hardware, including a Saleae logic analyzer and
additional Arduino boards, to analyze and comprehend the
serial communication protocols employed for each challenge
and execute the attacks. We also utilized open-source reverse
engineering tools for static and dynamic analysis, to better
understand the attack vectors whenever the provided side-
channel leakages did not provide a clear path on how the
system operated. Reverse engineering of firmware implemen-
tation is a common attack surface that can be utilized to gain
additional knowledge about the system, particularly when the
hardware—such as the target board in question—hasn’t been
secured robustly, allowing for the firmware on the microcon-
troller’s flash memory to be read easily.

Since all the members belonged to different universities,
we were not able to meet in person. As a result, we explored
efficient methods to perform virtual meetings throughout the
entire duration of the competition. Our remote meeting setup
included a Discord Server where important files such as code
snippets and instructions on building copies of the target board
were shared, as we will see in Section, II

II. METHODOLOGY

In order to maximize the efficiency of our team we crafted a
methodology to approach each challenge. With this methodol-
ogy we were able to perform a thorough examination of each
problem at hand. This ensured that we had identified all the
possible exploitation ways and selected the most optimal in
each case. This process can be seen in Figure 1.

According to the attack flow, presented in Figure 1, the first
step of every challenge was to load the .hex file into our

Meletios Michail
Department of
Electrical Engineering
National and Technical
University of Athens
melmichail @ gmail.com

George Mamidakis
Department of
Computer Science
University of Makedonia
mamidakisgeorge @ gmail.com

[Start

Static

—

Dynamic

simavr Flash { Ghidra ‘
Observation ‘

L

]

Saleae \

Attacker
Arduino

Dump
Analysis

" Arduino (
Céds Python

| |
¥ i v

{ Solution
' | | |

—

e

Fig. 1: Methodology Flow

Arduino target boards and just interact with the binary and
observe how the hardware responds to user-provided input.
After we have concluded our initial assessment, we converted
the IntelHex files to binaries and loaded them to Ghidra,
an open-source reverse engineer tool, that also supports the
AVR architecture, and its ability to produce a decompiled
version of the binary. Simultaneously, we created several logic
dumps using an analyzer of all signals present on the board’s
peripherals to be able and analyze them with better precision.
Manually and visually inspecting the signals was also feasible
in most cases.

A. Dynamic Analysis Environment

The primary dynamic analysis tool we used for different
challenges was a logic analyzer, with which we captured the
logic data sent from the Arduino to the peripherals. Another
tool we used to gain a better understanding of the binaries
runtimes, without using it to solve challenges, was simavr.
With it, we could simulate the binaries and start a gdb server.
After connecting to the simulated device, we would open
avr-gdb, and connect to the exposed port on localhost, and
begin debugging. Some of the challenges we tackled with
debugging were checked for the peripherals, specifically the
keypad. We would set a breakpoint to the relevant address, and
manually change the return value to bypass the check. Though
we spent some time trying to find a solution to somehow
emulate the keypad, we didn’t find anything before the end
of the competition. Another tool

B. Replicating The Target Board

As previously mentioned, since the team members couldn’t
meet physically, and we were provided with only one board,
we decided for the rest of the members to purchase the
necessary sensors and components of the target board and
replicate it ourselves. To identify the components, we looked
at the supplied video to try and gain an early advantage and
purchase them early. After searching for each sensor we waited
for the board to arrive and one team member mapped all the
connections to each peripheral using a multimeter. After a bit
of manual testing and wire planning, we constructed 2 similar
boards so we could all load the firmware and understand what
was going on.

Fig. 2: Target Board Replica

C. Coding Framework

The coding solutions we chose were a mixture of Python
and Arduino code. Python was chosen for a variety of reasons.
It allowed us to quickly and easily analyze and process
information from dumps and other files we generated, as well
as to interact with the device and perform the attacks required
due to the seamless communication it offers to devices through
the serial library. Arduino code was used in attacks and
scenarios where we used another Arduino to perform various
attacks like brute-forcing and man-in-the-middle that required
physical triggers. While moving through the challenges of the
final phase we realized that we tended to reuse some specific
code snippets for performing specific attacks, interacting with
devices over serial, and many more. This led to the creation
of a set of wrappers (callable functions) to automate specific
processes. Investing time into this particular task proved
beneficial since it increases the productivity and work flow
during the development of our solutions.

III. CHALLENGES

The section is comprised of three subsection, one per chal-
lenge set provided during the competition. Each of the subsec-
tions contains a summary box for each challenge accompanied
by a challenge description consisting of a brief explanation of
the code, the vulnerability in it and the exploitation method
followed to achieve each challenges goal.

A. Week 1

Binary Logic

Attack type: Timing Analysis
Challenge solution:

Barry - ?

Challenge Description: You and your friends have
just arrived at the exclusive Hollywood ”All-White Party”, but
you’re missing invitations. You found a missing badge outside
the entrance gate, but after scanning at the gate, the security
system is asking you for a username and 10-digit password
PIN credentials. Can you uncover the secret passcode, blend
in with the glamorous crowd, and find a way inside the party
to experience the glitz and glamour in a reasonable amount of
time.

Problem Statement: Perform Timing Analysis to re-
cover name, and conduct static and dynamic analysis to obtain
information concerning the hash.

Analysis: This challenge had two parts. The first part
asked for a username over serial, and the second one for a
10-digit code from the keypad. To recover the username, we
performed a timing analysis on the response time of different
input characters. The longer it took to print the *Invalid user-
name’ message, the more characters we successfully identified.
This vulnerability is due to the way the character check is
implemented in the binary, checking one character at a time.

After we scripted and ran our exploit, we found the username.
Then we were asked for a 10-digit code through the keypad.
Trying random values, we got back that the SHA hashes do
not match, and then some values are printed. After performing
some attempts, we saw that the values printed occasionally
changed, though there were only a few of them.

import serial
import time
import string

printable_characters =string.printable
response_time_avg =2.20
io =serial.Serial (' /dev/ttyACMO’, 115200)
def find_username () :
user_input =""
char_count =36
for _ in range(len(printable_characters)):
user_input +=printable_characters/[char_count]
io.write (user_input.encode())
start_time =time.time ()
response =io.readline () .decode ()
print (response)
end_time =time.time ()
response_time =end_time -start_time
print (response_time, user_input)
if response_time >1.05 xresponse_time_avg:
response_time_avg =response_time
char_count =0
else:
user_input =user_input[:-1]
time.sleep(0.01)
char_count +=1

def welcome () :
while True:
response =io.readline () .decode ()
if ’serial):’ in response:
break

try:
welcome ()
find_username ()

except KeyboardInterrupt:
io.close()

As for the hash, we attempted multiple approaches. Per-
forming static analysis on the binary, we found through yara
rules that the SHA hashing algorithm used is SHAI1, and
identified some parts in the binary which used them, like
FUN_code_000afc. We also found them in offset code:000067.
Going through the binary, we identified multiple parts of
the binary’s logic, like the string pointers for the printed
messages, the check of the keypad, the decoding of the keypad
i2c input, and the comparison of the hash bytes. But due
to the complexity of the code and hard readability of the
decompilation, what we could achieve was restricted.

One of the problems we faced while performing dynamic
analysis was we couldn’t simulate the keypad. One of the
approaches we tried was to write an i2c slave to emulate
the keypad. This was implemented by using an extra arduino
board. Though it was infeasible for our setup, we could
theoretically bruteforce all the possible 10-digit numbers with
this method and we understood how the i2¢ protocol works
completely.

#include <Wire.h>

int button_press_send =0;
bool first_send =false;
byte byte_to_send =0xEQ;

void setup() {
Wire.begin (0x20);
Wire.onReceive (receiveEvent) ;
Wire.onRequest (requestEvent) ;

Serial.begin(9600);
}

void loop () {
delay (10);
}

void receiveEvent (int howMany) {
while (1 <Wire.available()) {
char ¢ =Wire.read();
Serial.print ("c: ");
Serial.println(c, HEX);
}

int x =Wire.read();
Serial.print ("x: ");
Serial.println(x);

if(x ==0x0F) {
byte_to_send =0x0E;
Serial.println("first");

}

if(x ==0xFO0) {
byte_to_send =0xEOQO;
Serial.println("second");

}

if (button_press_send) {
byte_to_send =0xFO0;
button_press_send =0;

}

void requestEvent () {
Wire.write (byte_to_send);
Serial.print ("sending: ");
Serial.print (byte_to_send, HEX);

if (byte_to_send ==0xE0 and
button_press_send++;
first_send =true;

!first_send) {

}

if (byte_to_send ==0x0E) {
button_press_send++;
first_send =false;

Another approach was to load the binary in a debugger and
set breakpoints in different addresses to check the internal state
of the memory, and to bypass different check. Through this we
found out that one of the set of numbers printed on a wrong
input, 167 98 212 144 128, are the first five bytes of the SHA1
hash of the username, Barry. Since it checks only the first five
bytes, we performed an exhaustive search of all SHA1 hashes
and their first five bytes to see if we could find any matches

with the known bytes that are returned. Unfortunately, this
didn’t return any promising results.

Bluebox

Binary logic: Phone Simulator
Attack type: Frequency Analysis
Challenge solution:

B339B009

Challenge Description: In a secret underground
lair, you and your team uncover the hardware for legendary
blue box hack. To unlock the secrets of the lair, you must
decode telephone frequencies and recreate the iconic audio
tones in order to reveal the flag. Its time to unearth the blue box
technological history before the authorities arrive to shutdown
your operation.

Problem Statement: Analyze the DTMF-like keypad
frequencies and map the transmitted tones into the alphanu-
meric values.

Analysis: Our initial task, like the rest of the challenges,
was to load the firmware onto the board. Flashing it on the
board triggered the buzzer to play four tones. Upon connecting
to the serial interface with screen, we discovered that we need
to replicate these tones one by one.

We began conducting research based on the challenge’s title,
which led us to explore phone phreaking and related attacks.
Our initial assumption was that we might need to perform
a blue box attack, but that path turned out to be a rabbit
hole. After experimenting with the keypad, we made educated
guesses about how this challenge operated, and we realized
that each key on the keypad was associated with a specific
frequency.

To address the first part, our approach involved capturing the
frequency of each key using a tool called ’Sonic Visualizer’
while pressing each key individually. We started with ’1°, then
’2’, and continued in sequence. It’s worth noting that every
four key presses generated a new four-tone sequence as part
of the challenge. However, we chose to ignore it until we had
mapped all the keys on the keypad. After adjusting the settings
in ’Sonic Visualizer’, we ultimately obtained the following
results:

Fig. 3: Frequencies loaded to Sonic Visualizer

1: 2800 - 2900 Hz
2: 3000 - 3100 Hz
3: 3100 - 3300 Hz
A: 3300 - 3500 Hz
4: 3500 - 3600 Hz
5: 3700 - 3800 Hz
6: 3900 - 4000 Hz
B: 4100 - 4200 Hz
7: 4200 - 4300 Hz
8: 4400 - 4500 Hz
9: 4600 — 4700 Hz
C: 4800 - 4900 Hz
x: 5000 - 5050 Hz
0: 5100 - 5150 Hz
D: 5500 - 5550 Hz

An interesting note to consider here is that the last fre-
quencies were not precisely defined. It’s possible that the
laptop’s microphone was not optimal, resulting in a recording
with various frequencies that required analysis. Fortunately,
we were able to distinguish them effectively.

After successfully mapping all the keys, we recorded the
next four-tone sequence, and by examining the frequencies, we
were able to recreate it. The challenge then played the flag, and
we realized that to decode it, we needed to repeat the process
of translating each tone into a letter. After experimenting for
a while, we determined that the flag was "B339B009”. We
tested it with the keypad, and we were rewarded with the
happy song.

We also attempted to automate this process by using the
script we had created during the “allwhite” challenge, where
we managed to simulate the keypad with an Arduino. How-
ever, this approach proved to be extremely time-consuming,
so we decided to focus on finding a solution for the second
part of the "allwhite” challenge, which unfortunately remained
unresolved.

B. Week 2

Operation SPItFire

Binary logic: Custom Message
Transferring

Attack type: Dynamic Analysis
Challenge solution:

SPyBURNd

Challenge Description: Amid the digital battle-
ground, you, an accomplished spy, are assigned the mission
of deciphering an intricate maze of wire traffic acquired from
the mysterious hacker collective, SPItFire. To assist your
efforts, your remote team has gained access to a device linked
to one of SPItFire’s surveillance camera, allowing you to
clandestinely exchange messages. Your objective: find out
how to communicate with the security camera, and acquire to

uncover the coveted password flag that can be used to infiltrate
their security footage.

Problem Statement: Analyze the transmitted
"HELLO” message with a logic analyzer, and the errors
received from the binary to understand how to send the
FLAG message.

Analysis: When we started the challenge, we observed
that as soon as the message 'Receiving message "HELLO™”
appeared, the arduino started sending 5 Volts to the relay,
indicating a message was being sent. To capture that, we
connected a logic analyzer to it. When we opened the capture
in Logic 2, we tried to apply analyzers like SPI, but nothing
worked, so we tried retrieving the values by observing the data
bus.

b2 D12-MISO

Fig. 4: HELLO logic capture

Through this process, we got the bits 10100101
00000101 01001000 01000101 01001100 01001100
01001111 00111110, which correspond to the hex value
a50548454c4c4f3e. This decodes to HELLO, along with
some other interesting values. To understand those values, we
focused our attention to the challenge program.

Running the Linux command strings on the binary, we saw
that 4 different errors existed inside the binary, ’Incorrect
Header’, ’Incorrect Length’, *’Length must not exceed 10’, and
’Bad CRC’. Running the binary and entering FLAG in hex,
that is to say 464c4147, we got the incorrect header response.
Since a5 was the first value in the hello message, we tried
to prepend that to the flag message. Doing so returned the
incorrect length error. With this we confirmed that a5 was the
header byte. The next byte we thought would be the length
byte. Again, looking at the HELLO message, 05 is before the
HELLO message, and it is exactly the length of it. However
sending a504464c4147 still produced incorrect length. Since
the above message has one extra byte, we appended a random
byte to our message, and got the bad CRC error. This indicated
that the last byte was the CRC byte. Since we got only one
byte, we assumed that the algorithm was CRCS8. We found
the FLAG CRC8 byte to be da, and after appending it to
our message and sending it, we got the ’Recieving Flag...
message’.

Since the flag was again transmitted through the relay, we
connected our analyzer and captured the flag. One error we
faced was the inconsistency of the CRC8 byte, which can also
be seen at the HELLO message, since it is 0x35, not 0x3e. We
attempted to read the data and bruteforce the various CRC8
byte, but we could not settle on a correct answer. To resolve

0 D11-MOSI

02 DI2MISO

Fig. 5: Correct flag logic capture

our issues, we exported the flag captured data as CSV, and
parsed them.

import csv

file_path =’digital.csv’
time_info []
time_diff
temp_time =0
start_bit ="1"
with open(file_path, 'r’) as file:
csv_reader =csv.reader (file)
next (csv_reader)
for row in csv_reader:
time =float (row[0])
state =int (row([1l])
time_diff.append(abs (temp_time-time) «1000)
temp_time =time
time_info.append(time)
time_diff =time_diff[2:]

bits =[]

for time in time_diff:
time =round (time)
n_bits =round(time/200)
bits.append(n_bits)

flag =""
for bit in bits:
flag +=start_bit+bit
if start_bit =="1":
start_bit ="0"
else:
start_bit ="1"

def binary_to_ascii(binary_string):

n =8

chunks =[]

for i in range (0, len(binary_string), n)
chunks.append (binary_string[i:i+n])

ascii_string ="’

for chunk in chunks:
ascii_strings +=chr (int (chunk, 2))

return ascii_string

ascii_output =binary_to_ascii(flag)
print (ascii_output)

czNxdTNuYzM (s3qu3nc3)

Binary logic:
Attack type:
Decode
Challenge solution:
97349616

Math and Frequencies
7-Segment Display

Challenge Description: A cryptic dance of num-
bers unfolds before the eyes. Can you harmonize with the
rapid rhythms of this challenge? In this realm of numbers, a
symphony can conquer even the swiftest of mysteries.

Problem Statement: Decode the 7-segment display
Saleae dump.

Analysis: Upon flashing the firmware into the
board, the 7-segment display began to exhibit various
characters. We promptly connected a logic analyzer
to capture all the transmitted data. Additionally, upon
inspecting the serial output, we discovered a hint: QS-
Bzb3ByYWSvIGImIHNvdWSkLCByZWFjaGluZyBmb3Igd
GhlIGhlYXZIbnMu, which decoded into: A soprano of
sound, reaching for the heavens.’.

LR
[LLELRETRALL

T
LTI

0 A

;444447

Fig. 6: 7 segment display logic capture

To analyze the logic dump, we used Python. Initially, we
extracted the data into an svg file, and subsequently, we
utilized Python to parse it. The 7-segment display essentially
consists of 8 inputs, which are correspondingly mapped to the
letters a, b, c, d, e, f, g, and h.

7-SEGMENT DISPLAY

Fig. 7: 7-segment display channels

Our script collected all the active letters at a specific point
in time and converted them into ASCII text, which was then
displayed on the 7-segment display.

f =open(’digital.csv’, ’'r’).readlines|()
flag =""
link ={

0 :'c’,

1 :rd’,

2 :re’,

3 :'b’,

4 :ra’

[}

: g 4
}

codes =[]
last ="'
last_batch =[]
for line in f[1:]:
signals =line.split(’,’) [1:]
signals[-1] =signals|[-1].strip()
data.append(signals[0]
data.append(signals|[1]
data.append(signals[2]
data.append(signals|[3
data.append(signals|[4]
data.append(signals|[5]
data.append(signals|[6]
data.append(signals[7]
COde —nn
cc =0
for char in data:
if char =="1":
code +=link([cc]
cc +=1
codes.append (code)
last_batch.append (code)
if data =="0"=x8:
print (last_batch)
max_length =max (last_batch,

key=1len)

flag +=max_length #.replace(’h’,’’)
flag RIS T 1]
last_batch =[]

last =code

print (flag.replace('h ', 7))

The result appeared as follows:

cb debag cdeafg debag d cbfg cb d
debag d cdebaf debag d cdebaf cb d
cbfg d cdebaf cb d cb d debag d
cdebaf cb d cdebaf d cdebaf d
cdebafg d cdebaf cb d cdebaf d
cdebaf d cdebafg cb d cb d cdebaf d
cdebafg d cdebafg cdbafg d debag d
cbfg cb d debag d cdebaf d cb d
debag cdebafg d cdafg d cdebafg cb d
debag d cdebafg d cba d cdebaf debag
d cdebaf d cdafg d cdbafg d debag d
cdebaf cdbag d cdafg d cdebaf d
cdebaf d cdeafg d cbfg d cdebaf cb d
cdbafg d cbfg d cbfg d cdebafg d
cdebaf cdbag d cdeafg d cdbafg d cdafg
d cb d debag d cdebaf cb d cdebafg d
cbfg d cba d cdafg d cdeafg cdbag d
cdebafg d cba d cdbafg d cdebafg d cba
d cdeafg cb d cba d cdeafg d cdbag d
cdafg d cdebafg cbfg d cdebaf d cdafg
d cdeafg d debag d cdbag d cbfg

Which was decoded using dcode.fr into:

https://www.dcode.fr/7-segment-display

126_41_2 02_01_4 01_1_2 01_0_0_8 01_0_0_81_1_0

889241201285 81287020592 03.5

_0.06.40194480369512013847563
8 798761 763584056234

We also categorized the data based on the pauses we
observed in the dump so the final version was something like:

[\ N NS R
[NSJRE SN
(=)

S

—
)

— = DN
N
[\l e]

()
=
oo
=)

|

IO

IO
00 00

—
—
S
oo

— \O
l\Jll\)
OI-Jk
—
(V]

— 00
I\JIUI
OOIOO
~
(=

[\
(]
N
el
[\
©

(%)
o)
=
@
(@)
N
o

»-
\O
~
~
o0
(]

(98]
(@)}
\O

Pﬂ
(%)
o~
< W
)
(@)

(O8]
o0

—
~
(o)W]

After analyzing the resulting numbers, it became evident
that they formed a Fibonacci-like sequence. Our attempts to
analyze them through scripting proved futile.

output =[1, 2, 6, 24, 120, 20...]

Following some extensive debugging, we resorted to online
research. Searching both the name of the challenge and the
numbers led us to this website. Remarkably, the sequence on
this website perfectly matched the one from the challenge.
When we tried the next number in the sequence, we success-
fully obtained the flag: 97349616.

For a more in-depth examination of the binary, we imported
it into Ghidra and attempted to locate any relevant information.
While we identified numerous intriguing logics and frequently
used memory addresses, such as DAT_mem_024c, the de-
compilation proved to be quite intricate. Nonetheless, we did
manage to identify the code responsible for conducting the
check.

C. Week 3

The following subsection outlines a general analysis of
the challenges contained in set 3. Due to limited amount of
time our team did not have the time to implement all of

the attacks and exploitation methods that will be described
for each challenge. However, we still achieved to perform
important analysis and note down ideas of how we would
continue.

Sock and Roll

Binary logic: Locked Factory Door
Attack type: Brute force frequencies
Challenge solution: -

Challenge Description: In the heart of the whim-
sical and colorful Happy Socks factory, you find yourselves
caught in a captivating and slightly bizarre world. This factory
is a maze of vibrant rooms filled with the magic of sock-
making machines, piles of socks adorned in all shades and
patterns, and, of course, the joyful, dancing sock mascots
that are the emblem of this fantastical place. However, what
was initially a delightful visit has turned into an unexpected
challenge. You have been mysteriously locked inside one of
the factory’s rooms, with no apparent way out. The laughter
and cheerfulness of the factory have given way to a sense of
urgency as you realize they need to escape. Luckily, you find
the Happy Tap Dancing Socks Message Machine 2000, which
seems to be transmitting some strange message. The only way
to exit this colorful world and return to reality is to send a
distress signal using this cutting-edge messaging technology.

Problem Statement: Create a frequency generator to
brute force different frequencies in order to find out what the
distress signal is.

Analysis: The challenge seemed to revolve around a
messaging system that operated over the air and utilized two of
the target board’s peripherals: the buzzer and the microphone.
The buzzer generated two alternating tones with frequencies
around 32 kHz and 1 kHz, representing an "all-good” message.
Our objective was to transmit a similar message in the same
format but as a distress signal.

15:479ms
40.1ms +0.2ms +0.3ms +0.4ms +0.5ms +0.6 ms +0.7 ms +0.8ms +0.9 ms

15:480
5 +0.6ms +0.7 ms +0.8ms +0.9 ms +

Duty: 50.0: 452.94 ps

1< | Freq: 1.103
| width™:2.208 kHz
906.59 is

Fig. 8: The 1kHz signals

+0.6ms

Uwﬁmﬁﬁwmﬁ =N

*02ms

Fig. 9: The 31 kHz signals

Our analysis primarily focused on capturing a digital signal
from the buzzer using a logic analyzer. We used the timing

https://oeis.org/A008336

information to extract details about the transmitted signal,
including its duration, frequencies, and the number of alterna-
tions per message transmission. Subsequently, we attempted to
generate other signals following the same format using Python
and the sounddevice library. Unfortunately, we were unable to
identify any valid patterns or obtain additional information
about the messaging format.

import numpy as np
import sounddevice as sd

Parameters for the square
frequency =1100 # Frequency
duration =2.0 # Duration 1in
sample_rate =44100 # Sample

wave
in Hertz (A4 note)
seconds

rate in Hertz

Generate the time values
t =np.linspace (0, duration,
int (sample_rate xduration), endpoint=False)
Generate the square wave
square_wave =np.sign(np.sin(2 =*

np.pi xfrequency =t))

Play the square wave
sd.play (square_wave, sample_rate)

Wait for the tone to finish playing
sd.wait ()

Furthermore, when analyzing the analog input signal from
the microphone, it appeared that no data was being transmitted
while the buzzer was in operation. However, removing either
the buzzer or the microphone resulted in a message transmis-
sion failure, leading us to believe that these two components
were operating as an emitter-receiver duo.

In our last attempt, we conducted an exhaustive search
in terms of frequencies, akin to a brute force attack, to
identify the appropriate message. Due to the overwhelming
sound generated by the buzzer and the sound produced by
the Python code, we attempted to directly feed the signal into
the microphone. Unfortunately, our efforts were in vain, as
we could not obtain any clear logic captures while the target
board was operating normally.

Vender Bender

Binary logic: Motor Movement
Attack type: Fault Injection
Challenge solution:

mMmCaNdyY

Challenge Description: You roll up to that there
vending machine, and it’s making a soft hum, like a well-tuned
engine, promising you a sweet snack for your taste buds. You
eyeball the colorful snacks, deciding if you want them chips
for a salty crunch or that chocolate bar for a sweet fix. You’'ve
got some coins clinking in your hand, ready to drop ’em in
and get that engine running. You pause, and think if there is a
better way... a free way. Maybe if you trigger an error before
the snack is dispensed, you can get your money back? Can

you pump the brakes when your hear the gears whirring, and
make off with your snack like it’s a freshly greased wrench?
Then lets take those taste buds on a delicious test drive.

Problem Statement: Perform a simulated fault injec-
tion attack to the vending machine’s motor.

L % 2 s

Fig. 10: Exploitation setup

Analysis: Upon loading the firmware onto the board,
the relay began toggling. Connecting to the serial interface
revealed two recurring messages. The first message read:
’After receiving credit, send "ERR” to jam the motors’ while
the second message stated: "Motor movement SUCCESS. A
snack was dispensed for $2. Insert another credit for a new
snack.

We recognized that we need to send the "ERR” message
at a specific time and began doing it manually. Unfortunately,
manual attempts yielded no success.

To automate the process, we wrote a script to send the
”"ERR” message and induce an error. After numerous attempts,
we generated a few motor 5902 errors, but determining the
correct timings remained elusive.

import serial
import time
import string

printable_characters =string.printable
response_time_avg =10

offset =0
FAULT_KEY ="ERR".encode ()

Define the port and baud rate

ser =serial.Serial (’/dev/ttyACMO’, 115200)
try:

ser.write (FAULT_KEY)

response =ser.readline () .decode () .strip()

print (response)
except KeyboardInterrupt:
ser.close ()

We then documented each instance of relay toggling and
the timing of messages in the serial output. Our observations
revealed a crucial detail: there existed a narrow window of
approximately 2 seconds when the relay toggled, and nothing
was printed in the serial output. It became apparent that the
“ERR” message needed to be sent during this brief window.

To be precise, the challenge followed this sequence:

o The relay remained closed for 3 seconds, with no activity
in the first 2 seconds.

o Following this, the first message was transmitted, fol-
lowed by another second of inactivity.

« The subsequent state was the ON state, lasting 7 seconds,
following the same pattern as the OFF state. However, the
second message was printed during the ON state.

Our deep understanding of the challenge was instrumental
in our progress.

Initially, we sent an "ERR” message after the relay tog-
gled from zero to one, introducing a 3-second delay in the
Python script, and then sending another "ERR” message. This
approach aimed to generate the motor failure, but the relay
state toggling timings were not consistent. Some timings were
too rapid to manage manually.

try:
ser.write (FAULT_KEY)
time.sleep (3)
ser.write (FAULT_KEY)
response =ser.readline () .decode () .strip()
print (response)
except KeyboardInterrupt:
ser.close ()

As a result, we opted to write Arduino code and introduce
additional hardware to the challenge. The concept involved
detecting when the relay toggled and sending the “ERR”
message directly to the main board’s serial interface.

#pushbutton connected to digital pin 7
int inputPin =8;

int previous_value =0;

variable to store the read value

int value =0;

void setup() {
Serial.begin (9600);
sets the digital pin 7 as input
pinMode (inputPin, INPUT);
read the input pin
previous_value =digitalRead (inputPin);

}

void loop () {
read the input pin
value =digitalRead (inputPin);

if (value !=previous_value) {
previous_value =value;
Serial.println ("ERR");

} else {
Serial.println ("HALT");

}

delay (100);

However, the serial communication between the boards
disrupted the relay toggling, leading us to rely more on Python.
We utilized an attacker Arduino to read the relay signal and
print either "ERR” or "HALT” to the serial and the Python
script was developed to monitor the serial data from the
attacker board and send "ERR” at the precise moment to the
main board.
import serial

import time
import string

printable_characters =string.printable
response_time_avg =10

offset =0
FAULT_KEY ="ERR".encode ()

Define the port and baud rate

serl =serial.Serial (’/dev/ttyACM0’, 115200)
ser2 =serial.Serial (' /dev/ttyUSB0’, 9600)
try:
while True:
response =ser2.readline () .decode () .strip()

if response =="ERR":
print (response)
serl.write (FAULT_KEY)
response =serl.readline () .decode ()
print (response)
if "5/5" in response:
for _ in range (60) :
response =serl.readline () .decode ()
print (response)

except KeyboardInterrupt:
ser.close ()

With this modified approach, we waited, and finally, the
delightful tune that plays when obtaining the flag played.

	Introduction
	Methodology
	Dynamic Analysis Environment
	Replicating The Target Board
	Coding Framework

	Challenges
	Week 1
	Week 2
	Week 3

